YEARS OF
F'T INNOVATION

PRESENTATION

Al AGENT ECOSYSTEM IN
ENTERPRISE
ENVIRONMENTS

G40

OpenAl's 5 Levels of
Artificial Intelligence

* Generate fresh concepts and breakthroughs
» Collaborate to drive creative and technical advancements

ADVANCED

OpenAl recently introduced a set of five levels to track its
progress toward building artificial intelligence software
capable of outperforming humans.

The tiers range from the kind of Al available today that
can interact in conversational language with people
(Level 1) to Al that can do the work of an organization

(Level 5).

Level 3: Agents
+ Act independently on behalf of humans for extended periods
» Reduce need for human involvement in sustained tasks

Level 2: Reasoners
 Solve simple problems at doctorate-level without external tools
« Demonstrated by GPT-4's enhanced reasoning abilities

Level 1: Chatbots

« Basic language comprehension and interaction
« Useful for information retrieval and customer support

RUDIMENTARY

Single Agents

ttttt
*
o ‘e
L3

* L 4
* L4
*

.0

A

Customer

SDLC with Al Assistant

Planning

Analysis

Planning ¢ CodeVista
Analysis 3 CodeVista W
3 CodeVista

7 AgentVista

Time to market

Collaborative Agents

Customer

Service Rep

0' ‘Q
‘e R
--

Hyper Agent in

Agentic Design Patterns: Multi-Agent Collaboration

Designing [Testing Documenting

| -.‘. | w @ g g
Waterfall Model Y Ty Y @ % ﬁ @
= g i Reviewer

Programmer Tester Programmer

Programmer Programmer Programmer C10
(s
T T :1;

—» {code} —> J‘ — {code} — 3 — {code} — El —» {spec}—» % {manual}

Programmer Reviewer Tester Programmer

Proposed ChatDev architecture. Image adapted from “Communicative Agents for Software Development,” Qian et al. (2023).

Hyper Agent in Software development

2024-9-26

HyperAgent: Generalist Software Engineering
Agents to Solve Coding Tasks at Scale

Huy Nhat Phan!, Phong X. Nguyen! and Nghi D. Q. Buil-t
1FPT Software Al Center, Viet Nam

Large Language Models (LLMs) have revolutionized software engineering (SE), demonstrating remark-
able capabilities in various coding tasks. While recent efforts have produced autonomous software
agents based on LLMs for end-to-end development tasks, these systems are typically designed for
specific SE tasks. We introduce HYPERAGENT , a novel generalist multi-agent system designed to
address a wide spectrum of SE tasks across different programming languages by mimicking human
developers’ workflows. Comprising four specialized agents—Planner, Navigator, Code Editor, and Execu-
tor—HYPERAGENT manages the full lifecycle of SE tasks, from initial conception to final verification.
Through extensive evaluations, HyPERAGENT achieves state-of-the-art performance across diverse
SE tasks: it attains a 25.01% success rate on SWE-Bench-Lite and 31.40% on SWE-Bench-Verified for
GitHub issue resolution, surpassing existing methods. Furthermore, HyYPERAGENT demonstrates
superior performance in code generation at repository scale (RepoExec), and in fault localization and
program repair (Defects4J), often outperforming specialized systems. This work represents a significant
advancement towards versatile, autonomous agents capable of handling complex, multi-step SE tasks
across various domains and languages, potentially transforming Al-assisted software development
practices.

) GitHub: https://github.com/FSoft-Al4Code/HyperAgent

oo

arxiv article

I7|F/7]

SDLC with Al Assistant

Thought : “server setting does not
appear when interface is triggered”
Request : “Asks the Navigator to
search for the keyword ‘server’ in the
codebase.

Waiting for Response......

Thought : “From the Navigator ‘s
response, we need to change enable
the flag ‘enable_server’in Server
class.”

Request : “Asks the Editor to change
flag ‘enable_server’in server.pyto
True”

Waiting for Response......

Thought : "The flag is enabled, need to
wvalidate if this change can fix the
issue.”

Request : “Asks the Executor to
execute the test case related to
server.py”

Waiting for Response......

Thought : "The test case completed
successfully, indicating that the
server setting has appeared on the

interface. The issue isresolved!”

Bequest
Besponse : The flag "enable_server" is set
to False after navigating through all of the
contexts that " server’ might appear

MESSAGE QUEUE

Request:

Besponse : Changed the flag
‘enable_server’in server.pyto True and
generated test_serve.py to validate the
correctness

<

MESSAGE QUEUE

Request:

Besponse : The test_server.py was
successfully executed, and all of the test
cases passed.

<

MESSAGE QUEUE

NAVIGATOR

Actlon: use code_search to search for “server’keyword in
the codebase.

Observation: The files server.py contains relevant settings.

Actlon: use go_to_definition to jump to the server.py
Observation: the flag ' enable_server'is set to falsein the
__init__ function.

Final answer : After navigating through different files, the
flag ‘enable_server’ in server.py is likely the root cause

CODE EDITOR

Actlon: use open_file toopen server.py

Observation: file is opened

Actlon: use repair_code to replace ‘enable_server =False’
to‘enable_server = True’ inthe init function.
Observation: Flag is changed from False to True and the
file is saved. Need to test if this change can successfully
resolve the issue.

Action: Generate test_server.py to test the change.
Observation : test_server.py is generated successfully and
saved to the the test/ folder

Final answer : the flag ‘enable_server' is set to True and a
test_server.py is generated to test if the change can resolve
the issue.

EXECUTOR

Action: use open_file to open test_serverpy
Observation: file is opened.

Actlom: use interactive_bash_shell to to execute
test_serverpy.

Observation: test server.pyis executed successfully.
Final answer : The test_serverpy is executed successfully
and all of the test cases passed

%

server Py

test_server.py

user.py

CODE REPO

Interact

Figure 2 | Overview of HYPERAGENT: A scalable, multi-agent system for software engineering
tasks. The workflow illustrates the central Planner agent coordinating with specialized child agents
(Navigator, Editor, and Executor) through an asynchronous Message Queue. This architecture enables
parallel processing of subtasks, dynamic load balancing, and efficient handling of complex software
engineering challenges.

m z FPT X 4

'._: rs/TongTP/Desktop/Code%20Project/ typer-agent/prototyper-agent/Test2/FDN20Y%20Event%20Project_Onginal_Registers/modified_html.html = ‘\
P Weekly Al boosts u. Elastic @ System Dashboard -.. G Plon active, install Q.. <> xVista admin (@) (20+) CodeVista-A.. & Welcome toiTop 2 Learning path: Proje.. @ CodeVista Video De. | PSI_REPORT_IP - Po. Report rody Proup Index Summory_KPI All £S. | Tracking GithubCop... EJ§ BU Overview (2)xisx £ BCCPSI2025 - Docu. 3% PrivateGPT

Eﬂﬂ Overview WhyAtend Agenda SideActivities Eventlocation Speckers Highlights FAGs EN~

YEARS OF
=) INNOVATION

C B 6™ August 2025 © Danang, Vietnam)

SDLC with

SDLC 2.0 with Al Agents

Planning ¢ CodeVista

Analysis \4) CodeVista

P TestVicta
SDLC 3.0 with Multi Al Agents n) AgentVista

Planning \4) CodeVista

() TestVista 50% saving time t(:) market
I\
‘ AgentVist
Time to market ” : «) ge S

I
I
I
I
Analysis f;} CodeVista :
:
I
I
I
I

G

A story

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: A story told by our client…

